Client Relationships 101

Session Number bpei1
Barbara Peisch

Peisch Custom Software

3138 Roosevelt St. Suite O

Carlsbad, CA 92008

Voice: 760-729-9607

Email: Barbara@peisch.com

Overview

Regardless of how much programming experience you have, going independent is a whole new world. The first step is creating a standard contract (usually called a “Consulting Agreement”) that’s fair to both you and your future clients. This session covers the essential elements of a good contract, plus some negotiation strategies. It also covers the pros and cons of billing clients for time and materials versus fixed price, as well as what makes a good design specification. Finally, it covers how to establish and maintain a good working relationship, as well as when and how to terminate a relationship that’s gone sour.

What is a “Consulting Agreement” and why do you need one?
A consulting agreement is a document which clarifies the terms under which you will work with your client. It’s important because without it, both you and your client may be making assumptions about how things will work—assumptions which could be in direct conflict. For example, a very common assumption that clients make is that they automatically own the copyright on any software you write for them. While this may be true when an employee writes software for his employer, it is not necessarily true when you, as an independent consultant, write the software! Unless you explicitly assign copyright over to the client, they do not own the copyright. What other assumptions are likely to conflict with the way you work, or cause problems?

Let’s take a look at some important elements for a Consulting Agreement.
Charges
It’s extremely important that your client understands what you charge for and what you don’t. Here are some essential points you need to make:

· Whether you charge by the hour (time and materials), or on a fixed bid basis
· If you charge by the hour, whether you charge different rates for different kinds of activities
· How and when you notify your clients of a rate increase
· Whether you charge for phone consultations
· Whether you charge for travel time or mileage if you must visit the client’s site
· How you charge for travel time if you must travel out-of-town for the client, and who pays the expenses of such travel
· How other expenses, such as the purchase a third party tool for use on this project, are billed
I have always charged on a time and materials basis. Charging on a fixed bid basis has its own set of challenges, especially when it comes to dealing with change requests. I’ll compare time and materials billing with fixed price billing later in this document.

 I generally don’t charge a different rate for different kinds of work, although some consultants do. My rationale is that my level of expertise is going to come into play one way or another, regardless of the kind of job I’m doing. Exceptions to this may be if I’m learning a new technology for the project, and it’s something that will enhance my skills for the future. But again, this depends on the specific technology. For example, if I’m just learning about how to create a web application that’s going to involve a lot of learning time, I may either decide not to charge the client for a lot of my learning time, or to give them a discounted rate on the project. If I’m learning to work with a new ActiveX control in Visual FoxPro, I have enough experience to get the job done quickly. Therefore, this is something that I charge for even though I must spend some time learning about the new control. There’s always some learning involved in every project. You need to negotiate with your client as to which items you’ll charge for and which you won’t. It’s not necessary to take it down to minute details, like in the ActiveX example, but if you’re going to be writing off some learning time, like in the case of the web application, you should let your client know that. It’s good PR for your client to know that you’re willing to enhance your skills on their behalf without charging them.
Often, I will continue to bill existing clients at the old rate for a while after I have raised my rates for new clients. Usually this is because I’m finishing up a project that was estimated at the old rate. I notify clients of the new rate in a letter I send by snail mail. I also keep a copy of this letter in the client folder for each client I’ve sent the letter to. This way, I don’t have to try and remember whether or not I’ve sent a rate increase letter to a particular client.
I always charge for phone consultation, and I charge for travel time within San Diego County (where I live). Charging for travel time is usually more expensive for the client than charging for mileage. When I must drive to a site that is outside of San Diego County, I bill the client for mileage instead. The mileage rate I use is at or just below the standard IRS mileage rate. You can find the current rate by going to the IRS site at http://www.irs.gov and entering “standard mileage rate” into their search field. As of this writing, the page at http://www.irs.gov/publications/p463/ch04.html#d0e3034 includes the Standard Mileage rate.

If I’m flying on behalf of a client, the client pays for all expenses, including air fare, hotel, and if necessary, a rental car. I don’t charge for meals, but some consultants charge a per diem for meals because it’s more expensive than eating at home. I also charge for travel time, unless I can use the time to work on a project for another client.
When it comes to other expenses incurred during a project’s development, again it’s a judgment call as to whether or not I charge the client. Sometimes, the client wants me to use a specific tool for which they’ve bought a site license. In this case, the client pays for the tool. If I buy a tool I wouldn’t buy for any other project, and won’t use on another project, I charge the client for it. Of course, the client must agree in advance that the purchase of the tool is a worthwhile investment. If I find a tool that I can use on a number of projects, I pay for it myself.

This brings me to another important point. I provide all source code to my clients. I don’t believe in chaining a client to me. I’ve found that taking this approach, rather than trying to keep them by withholding the source code, makes clients more likely to stay with me. This doesn’t mean I give them the copyright. It just means they can use another developer if they need to or want to. When you add a third party product to the picture, it complicates things. If they want to maintain their program in that situation, they must also buy the product. For this reason, I always discuss using a third party product with my clients before using it, and I encourage them to buy their own copy.
By the same token, I encourage clients to buy their own copy of Visual FoxPro. Then, if they feel it’s necessary to make a change themselves, they have that ability. An example of a situation that may arise is if you are on vacation, and they discover a bug that’s causing a crash at a crucial point. They may have an in-house programmer who can fix this temporarily until you can review the change and make sure it doesn’t have an adverse affect elsewhere. Make sure they understand that by doing this that you must charge to fix bugs that may be caused as a result of their change and that if they want you to make future modifications, you will need a copy of the changes they made. You must also make sure that they know not to make changes to code if you are actively working on the project.
Billing and Payments

You also want to make sure your client know what to expect when it comes to billing and payments.

· How often you send out invoices
· Your payment terms
· Your late payment policy
· A deposit required for new clients (if any) and the amount
I prefer to invoice on a weekly basis. This doesn’t mean that I bill all clients every week. It does mean that I review each client’s situation at least once a week and assess whether I should send an invoice or not. Variables that affect this decision include whether there’s still unfinished work for the client, and how much. If on the day I’m billing I know there’s still work to be done, but maybe only an hour or two, and it’s likely to be finished in the coming week, I’ll postpone billing until the following week. Likewise, if I sent a client a bill the previous week, and I haven’t done a lot of work that hasn’t been billed, I’ll put off billing that client. If I’ve only done a small amount of work for a client, but it’s been a month or even more since I did that work, I’ll go ahead and generate an invoice. In some cases, where the amount is less than $20, I may just decide not to bill at all and write off the time.
Whenever possible, I like to time invoicing to coincide with deliverables, even if what I’m delivering isn’t very complete. It shows the client that they’re getting something for their money. I may have given them an update a few days before the invoice, or a day after. Either way, they get the invoice, and can tie it to what they see in the update.
My standard terms are that invoices are due within 30 days of the invoice date. I offer a 10% discount on labor only for invoices paid within 2 weeks of the date of the invoice. This provides an incentive to pay early, rather than charging a penalty for paying late.

My late payment policy is as follows:

1. If any invoice is over 30 days old, new invoices for that client will not offer a discount for early payment.

2. If any invoice is over 60 days old, all work for that client stops until the account is brought current

3. If any invoice is over 90 days old, I may send them to a collection agency and the client is not offered credit for future work. In other words, they must pay up front for work they want done, and all outstanding invoices must be paid.
This brings me to the last point regarding billing and payments. I normally require a deposit from new clients before undertaking any work at all. My initial consultation is free, and during that consultation, I get a feel for the scope of work. From that I can get a very rough ballpark figure for what the project will cost. If it looks like the project will be around $5000 or less, I ask for half of that as a deposit. If it’s more, I’ll ask for deposits in $2000 increments. I invoice as I normally would in this case, but close the invoice immediately, and send the client a copy of the invoice along with a statement that shows a history of deposits and invoices, plus whatever balance they have left. Of course, the client automatically receives the early payment discount as long as their account is in credit.
As I use up the deposit, I inform the client that it’s time to make another deposit. Does the client need to keep a credit balance through the life of the project? Generally they don’t. If a client can send three checks in a timely manner, I consider them a good risk and grant them credit after that. After this point, they only pay after I have invested the time into their project.
The above are general policies and I don’t always follow them strictly. Some large institutions have a lot of red tape and can’t seem to get invoices paid in a timely manner. Knowing this about them, I don’t tend to stick to the late payment policy as tightly as I might for a smaller client who I don’t know very well. Asking a new client for a deposit may also vary, depending on how badly I want the job and my confidence in the client. It’s all a judgment call and these are just general guidelines.

Termination

I always specify that the agreement can be terminated by either party at any time without advance notice. I also specify that the client is liable for payment of all work done up to the point of notice of termination. This is important for two reasons:

1. The client doesn’t have a case for suing me for not completing the project if either of us terminates the contract early.

2. I’m not stuck with a lot of unbilled work that I can’t collect.
Non-Disclosure
It’s likely your new client will be entrusting you with data and information that some of their own employees don’t even have access to. You may also be incorporating algorithms into your program that give your client a competitive advantage, and which they consider proprietary. Your consulting agreement should state that you will protect your client’s privacy, both when it comes to their data and the application itself. In my standard consulting agreement, I cover this under two paragraphs—“Protection of User Records” and “Non-disclosure”.

Intellectual Property

Who owns what in the software you deliver? This is stickiest point of most contracts. Copyright law covering work produced by a consultant says that the consultant owns the copyright to the software unless specifically turned over to another party in writing. This is just the opposite of the case of an employee who creates software for an employer, and is the source of a lot of confusion on the part of clients. This is something you must make sure you make clear to your clients. First, make sure you understand the different between a copyright and property. In one form of the contract shown in Appendix A, I specify that the software is the client’s property, but I own the copyright. What this means is that the client may do what they wish with the software as a whole, but may not copy it, except for use within their organization.
More often, I find myself using the alternative “Ownership and Intellectual Property Rights” paragraph instead. This paragraph is particularly appropriate if I’m developing a product for the client to sell, or I’m working on a project with other developers. The idea behind this paragraph is to assign the copyright to the client for the work as a whole, plus code I develop that’s specific to their project, but I maintain the copyright to code in my common library. Besides listing all my specific classes in Exhibit B of the contract, as outlined in the contract’s paragraph, I also keep these in a separate file when possible. For example, all my visual classes are in a library called PCs.vcx. My code-based classes are in a file called PCsApp.prg. The name of the library file helps distinguish that these are my classes. In addition, each class within the visual library has a zReadMe method that contains a copyright notice. A copyright notice need only be something like “© 2004, Peisch Custom Software”. (Note: You can show the copyright symbol as a “c” enclosed by parentheses. Word converts this to the copyright symbol.) For code-based classes, I put this notice at the top of the file.
The question of copyright can be complicated by the use of third party products in your application. Certainly, you don’t have the authority to assign the copyright over to your client. When I use third party products within my applications, I follow these procedures:

1. Always discuss the decision to use third party products with the client before the decision is made. Make sure they understand why you wish to use this product.

2. Understand and explain the royalties or distribution restrictions associated with the product.

3. Encourage the client to buy their own copy of the product, so they are capable of maintaining the software themselves if necessary. (This goes for the language you use for developing the software too.)

Fortunately, I’ve always had a good product that comes with a royalty-free runtime whenever I’ve had the need to use a third party product. This is optimal because the only cost this adds for your client is the price of the product, should they decide to purchase it, plus any maintenance contract the vendor may offer.
Other documents

In addition to a consulting agreement, you may have also heard of consultants using a “Letter of Engagement” and a “Functional Specification”.

A letter of engagement tends to be more specific to a project. It only lists in the most general terms what the project is about, and you would want the client to sign this before starting any analysis on the project. A letter of engagement will usually serve the function of a consulting agreement as well as laying out some general agreements for a specific project. I feel a letter of engagement is appropriate for very large projects, with a definite end point. Since my client’s projects are generally smaller, but long lasting, I don’t use a letter of engagement.

A functional specification is a detailed report of exactly what needs to be done for the project, and can only be delivered after the analysis phase. I usually use a consulting agreement and a functional specification, putting information specific to the project in the functional specification, and all general information about expectations and working relationships in the consulting agreement. I like to break my function specifications into two parts, one the user can understand and a technical section.

Client’s Section

The client’s section of the functional specification should include some mock up screens and an explanation of how things work. How things work is not just limited to what happens on a screen, but should also include any information on process flow, and should describe functions that may not be obvious from looking at screens.
Technical Section

The technical section of a function specification is to help you remember technical decisions you made during the analysis phase. This includes things like data structures, possibly a data flow diagram, and any notes about the technical approach you intend to take. It’s possible you may refer a client to something in the technical section if they have specific questions. Just be ready to translate it into laymen terms.
Additional Topics

There are a lot of other topics I could cover regarding the subject of consulting. To keep this paper from turning into a book, I’ll only cover a few.

Billing: Time and Materials vs. Fixed Priced

Whether or not it’s best to bill on a time and materials basis or a fixed prices depends on the circumstances and what you are comfortable with. In either case, you probably need to produce an estimate, so you’re probably wondering what the difference is. The difference is mainly client expectation, but to some degree is a difference in who has the greater liability.
With time and materials billing, it’s the client who has the greater liability. There must be some understanding on the client’s part that this is only an estimate, and that the actual price may vary. Time and materials works very well for long-term client projects. You may find that you are doing estimates at first, but soon, the client just asks you for changes without asking for an estimate. I’ve worked for many years with some clients without coming up with any estimates at all.
Fixed price is just that—a fixed price, and therefore the consultant has a greater liability. You are saying you will do a specified set of things at a specified price. Some clients like this much better than time and materials because they know exactly how much the program will cost. But you need to be very careful in how you bid a fixed price project. Most consultants will bid a fixed price job significantly higher than they expect just to cover situations they didn’t foresee. You need to make sure your specification is iron-clad. The last thing you want is to have your client angry about what you consider a finished product because they thought it would work one way, but you created something that works differently.

Keeping Your Client Happy

Educating your client

You’ve heard the saying, “An ounce of prevention is worth a pound of cure”. That is certainly true in avoiding misunderstandings with your client. A large part of this paper is dedicated to educating your client through your contract. While I can’t stress enough how important this is, you still need to communicate with your client through dialog. Most clients will probably sign your contract without really reading it, but it’s still important that they know about what’s in there. Therefore, I’ll mention some of the important points when I first meet with a client. I’ll mention them again as appropriate to make sure there are no misunderstandings. For example, if I have to travel on behalf of a client, I make sure we both understand who’s paying for the plane ticket and hotel before anyone spends any money.
When there’s a problem with the estimate

Clients don’t like surprises. Sometimes that even applies to good surprises, but certainly it applies to things like budget overruns and missed deadlines. We can’t always be perfect when it comes to estimates. Unlike a lot of professions, software development can run into a lot of unforeseen obstacles. When you run into one of these, you should let the client know as soon as possible. If it’s something that will cause a delay tell them. If it’s something that will increase the price, tell them. There are some cases where you run into some idiosyncrasy with the language, and you’re having trouble finding a workaround. In cases like this, it may be better for you to absorb the cost. After all, it’s not the client’s fault that there’s a bug in the language. It’s not your fault either, but since this is likely to cause a delay in the schedule, it can ease the blow to the client if you tell him that you’re going to shoulder the extra cost. One exception to this would be a case where the client insisted on your using a new technology you weren’t familiar with. In this case, you should make sure this is clear in the estimate, and warn the client that due to your unfamiliarity with the technology that the estimate is very likely to change.
Explaining a technically complex problem

Face it. If you talked to your clients about their projects using the same kind of terminology that you use when you talk to other programmers about programming projects, their eyes would glaze over so fast, you’d lose them forever. When discussing project difficulties with a client, you need to use extra caution that you don’t put things in terms they can’t understand. One great example that comes to mind is a quote from Sue Cunningham on explaining to clients how bugs get past her testing.

"I tell folks the app is like a big mansion of 350 rooms, 10 staircases and 5 elevators. Once in a while they'll take a path from room 33 to room 234 and cross a floorboard I never stepped on. If they find such a floorboard "loose", let me know and I'll get my hammer and nails out and fix it."
You may have a client who is more technically astute with whom you can use more technical terminology. Even in these cases, though, you should be sensitive to what your client is picking up on and what he’s not. If you see a look of confusion, don’t hesitate to backup and re-explain something in more detail or to define something more clearly.

Dealing with a Change in Personnel

The longer you work with a client, the more likely that you and that client have a mutual understanding. This can all change in an instant when there’s a shift in personnel. Someone may quit, retire or be promoted. Job functions get shuffled around. Regardless of why you find you’re working with someone new, you need to make sure you don’t make assumptions about what they know. Susan may have known that it costs extra because of travel time, and so she was cautious about asking you to drive to her office, but Ginny may not be aware of that at all. Make sure you schedule some kind of “orientation” time for someone new.

Sometimes a change in personnel may mean adjustments on your part too. It could be that Nick was pretty easy-going about knowing how much changes would cost and when you’d deliver, but Sam isn’t so relaxed—he wants written estimates for everything and gets upset if you don’t deliver on time. Try to be sensitive to what’s important to your new contact.
When its Time to go Your Separate Ways

Sometimes there’s no way that the client’s expectations and the way you work are going to be compatible. It may be due to a change in personnel or it could be that changes in budget constraints are making work with the client difficult. You shouldn’t give up immediately, but if you’ve made some effort to work with the new situation, but can’t, don’t take it personally. Bring up the subject of finding another consultant with the client. You may find that they’ve been thinking the same thing. I will always provide the client with source code and documentation, so they have what they need to work with another consultant. In some cases, it may help to provide a reference to another consultant. However you decide to handle things, try to be as diplomatic as possible. You may find that the client comes back to you with a changed attitude after a while, so you don’t want to burn any bridges.
One warning sign that things aren’t going well is when the client starts making false accusations of you. If the client starts saying things like you didn’t deliver something that you promised, even though you never promised anything of the kind, or that they agreed they wouldn’t pay you until a certain point, even though you never agreed to any such thing, this is a sign that the client is having financial problems. I’ve seen this happen to a number of consultants over the years. When things like this start to happen, don’t do any more work than you absolutely have to. There’s a good chance you won’t get paid. If the client is having trouble paying you, sometimes you can recover at least part of the debt by working out a payment plan. If that doesn’t work, you can try hiring a collection agency, but unless the amount is fairly large, collection agencies won’t do much for you. Hiring a collection agency is a last resort because they usually want to keep half of what they collect. Still, half is better than nothing.
One thing you don’t want to do unless you’ve made it extremely clear in your contract is put a time bomb in the program. If you have anything in the code that stops it from functioning because a client hasn’t paid you, you are opening yourself up to liability. Unless you’ve clearly warned the client of this possibility, they can sue you for obstruction of their business, and they will win—even if they haven’t paid you!
Appendix A – A Standard Consulting Agreement

Sample Agreement

Here is an example of a standard consulting agreement. Following this agreement are some example paragraphs you may want to use as substitutes within this agreement.

SOFTWARE CONSULTING AGREEMENT

The parties to this agreement are:

hereinafter referred to as CLIENT,

and

Peisch Custom Software, Inc.

3138 Roosevelt St., Suite O

Carlsbad, CA 92008

hereinafter referred to as PCs, Inc.

This agreement is specifically for software services during the period _________________ through _________________.

1.
SERVICES PROVIDED

The services to be provided by PCs, Inc. include the development of microcomputer software, consultation and assistance in regard to the use of such software, and other related activities as mutually agreed.

2.
WORK SPECIFICATION AND ASSIGNMENT
Work to be performed under this agreement shall be agreed to by both parties in advance. When requested by CLIENT, PCs, Inc. will provide an estimate of charges.

3.
RATES
PCs, Inc. shall be paid at its current standard rates. Work performed at CLIENT'S site shall include travel time, and is subject to a two-hour minimum charge. Telephone consultation shall be charged at the standard rate.

4.
EXPENSES AND OTHER CHARGES

CLIENT shall be charged only for actual expenditures for materials and equipment. PCs, Inc. shall not charge or accept any commission or finder's fee for equipment purchased by or for CLIENT. Travel and other personal expenses are chargeable only for travel outside San Diego.

5.
BILLING AND PAYMENT

PCs, Inc. shall provide CLIENT with a written statement of hours worked and charges incurred. CLIENT understands that payment is due upon receipt of such statement. Should payment not be made within 30 days, PCs, Inc. reserves the right to stop work until payment is made. CLIENT will maintain a deposit of _______________ in advance until this project is completed.

6.
TERMINATION

Either party may terminate this agreement at any time without advance notice. In the event of termination, CLIENT is liable only for work performed up to the notice of termination.

7.
WARRANTY

PCs, Inc. shall correct, without charge, any coding errors reported by CLIENT within 90 days after completion of any work order under this agreement. Such corrections shall be limited to coding errors, and specifically do not include errors in overall design or interpretation of user requirements. This warranty applies to the original program installed by PCs, Inc., but not to copies or modifications made by CLIENT or programmers contracted by CLIENT.

THE FOREGOING WARRANTY SETS FORTH EXCLUSIVE REMEDIES AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

8.
LIABILITY

PCs, Inc. shall not be liable for any incidental or consequential damages, even if PCs, Inc. has been advised of the possibility of such damages. Neither party shall be held responsible for delays or failures resulting from acts beyond its control.

9.
PROTECTION OF USER RECORDS

PCs, Inc. shall respect the privacy and confidentiality of CLIENT'S business and other records, and shall not divulge to third parties information gained therefrom in the course of providing services under this agreement.

10.
NON-DISCLOSURE

PCs, Inc. will not disclose details of CLIENT'S system nor provide a copy of CLIENT'S system or a similar system to any of CLIENT'S competitors. PCs, Inc. will not perform any work for a competitor of CLIENT without prior written consent from CLIENT.

11.
OWNERSHIP

The program materials and files developed under this agreement, including the source code, become the property of CLIENT. By law, PCs, Inc. retains the copyright to the code, and CLIENT may not copy or distribute programs developed by PCs, Inc. without specific written agreement. PCs, Inc. hereby assigns CLIENT the right to copy and modify the programs for use within its own organization. PCs, Inc. retains the unrestricted right to use for other clients or to incorporate in its own products the ideas, techniques, and code it develops, provided such use does not appropriate or reveal trade secrets of CLIENT. PCs, Inc. retains the copyright to all documentation it produces under this agreement.

12.
ARBITRATION

Any dispute that arises between the parties hereto, with respect to the performance of this agreement shall be submitted to binding arbitration by the American Arbitration Association, to be determined and resolved by said association under its rules and procedures in effect at the time of submission and the parties hereto hereby agree to share equally in the costs of said arbitration.

13.
CONTRACT

This contract is the complete and exclusive statement of the agreement between the parties relating to the subject matter, and supersedes all proposals and prior agreements, oral or written.

CLIENT acknowledges that he has read this agreement, understands it, and agrees to be bound by its terms and conditions.

SIGNED:

Name

Title

Date

Barbara Peisch

President

Date

Peisch Custom Software, Inc.

Alternative Paragraphs

There are lots of possible variations to an agreement you may want to use. Below are some examples.
In the case where you are working on a product that a customer will resell or you’re working on a project where you will be building on top of code others have created, you may want to replace the ownership paragraph with something like this:

11.
OWNERSHIP AND INTELLECTUAL PROPERTY RIGHTS

PCs, Inc. hereby assigns to CLIENT the copyright to the Program(s) developed hereunder. Notwithstanding the foregoing, CLIENT acknowledges that the Program(s) may contain programs, routines, objects, and other coding previously developed by PCs, Inc. or developed under this Agreement (collectively “Constituent Works”), that are collected, assembled, selected, coordinated and arranged to form or contribute to the Program(s), and that the foregoing assignment of copyright refers to the Program(s) as a compilation or derivative work of these Constituent Works (as provided in Exhibit B), not to the Constituent Works themselves. As provided in Exhibit B, the copyright to the Constituent Works remains with PCs, Inc., who may use the Constituent Works at any time, for any purpose, without restriction, obligation or liability to CLIENT. PCs, Inc. retains the rights to the free and unrestricted use of PCs, Inc.’s ideas, techniques, methodology, know-how, and other software engineering and computer programming technology previously known to PCs, Inc. or learned or refined in the performance of this Agreement (collectively “PCs, Inc.’s Technology”), regardless of the fact that PCs, Inc.’s Technology may be incorporated into or otherwise used in connection with the Program(s).

“Exhibit B” would be a listing of all the classes in my standard class libraries. I often will incorporate classes I’ve created previously into a project that is developed with a team of programmers. If possible, I’ll keep these classes in a separate VCX or PRG, so it’s clear that they are different. The VCX or PRG is named PCSLib.VCX and PCSApp.PRG, to make it even clearer that these are classes for which that I maintain the copyright. In either case, I’ll have a zReadMe method that has a copyright notice in it, as well as instructions on how to use the class.

You may also prefer a more flexible arbitration paragraph. Below is an example of a paragraph that allows claims to be settled through either small claims court or arbitration.
12.
SMALL CLAIMS AND ARBITRATION

The means for settling any controversy or claim arising from or related to this agreement shall be based on the amount of the claim. Claims of $5000 or less will be settled in small claims court. Claims greater than $5000 will be settled by binding arbitration under the Commercial Rules of the American Arbitration Association. The location of any such mediation and/or arbitration shall be San Diego County, California. The arbitrator shall be selected from the national panel of arbitrators of the American Arbitration Association with expertise in computer law and technology. Any court having jurisdiction over the matter may enter a judgment upon the award of the arbitrator. Service of a petition to confirm the arbitration award may be made by United States mail, postage prepaid, or by any regularly conducted commercial express mail service, to the attorney for the party or, if not so represented, to the party at the address set forth herein, or to the party's last‑known business address. THE PARTIES UNDERSTAND AND ACKNOWLEDGE THAT BY AGREEING TO THIS ARBITRATION PROVISION, THEY ARE GIVING UP THE RIGHT TO TRIAL BY JURY WITH RESPECT TO THIS AGREEMENT AND THEY HEREBY WAIVE SUCH RIGHT.
Appendix B – Rate Increase Letter
Below is what I use for a typical rate increase notification letter.

Month 00, Year
Joe Blow
Client Company
2345 Main St.

San Diego, CA 90000
Dear Joe,

It has been XX years since my last rate increase. An increase in expenses has made it necessary to raise my billing rate. I will continue work on the XYZ project, currently under development, at the old rate of $YY per hour. After XX/XX/XXXX, work on projects other than the XYZ project will be billed at $ZZ per hour. Once the XYZ project goes into production, changes will also be billed at $ZZ per hour. I will continue to offer the early payment discount of 10%.
Please contact me if you have any question or concerns.

Sincerely,

Barbara Peisch

Appendix C – Functional Specification
Below is a sample functional specification for a Tool Inventory system. This new system needs to do some integration with an existing system called the Widgets Etc Office System. All table names in the office system begin with the prefix “Wid”.
Caveat: This is a much pared down spec I wrote for a real system. The names were changed to protect the innocent. I’m sure if you examine it closely, you’ll find a lot of cases of missing files, fields, screens and unexplained relationships. Please keep in mind that this example is meant to give you a general idea of what goes in a functional specification and a real spec shouldn’t have these omissions.
Tool Inventory System

Design Specification

Widgets Etc. has requested a new Tool Inventory System to replace the existing system on the mainframe. This document defines the requirements and functionality for the new system.

General Requirements

The system is to be written in Visual FoxPro version 9.0, and will have access to the existing files for the Widgets Etc. Office System. Screens will be designed for a resolution of 800 x 600.

Security

The system will have three levels of security access. It’s expected that the existing functionality for defining groups in the Widgets Etc. Office System will be used for the purpose of setting up these security levels.

Tools Manager

This level allows access and full editing capability to all aspects of the system.

Tools Data Entry

This level will not be allowed to add or change categories, but will have full access to all other areas of the system.

Tools Query

This level is the default if a higher level is not specified. This level allows read-only access to the entire system. No data may be changed. All reports will be available. It will not be necessary to define this as a security group, because this will be the access level granted in the absence of either of the higher security levels.

Reports

Reports will be available from a Reports menu pad, and from specific screens where appropriate. A single screen will be displayed for specifying all options for reports, including destination, filter options and sort order. Where there are date ranges available, the rules are the same as in the Widgets Etc. Office System. In other words, filling in both dates will include records from the starting date through the ending date. Leaving the starting date blank will include all records on or before the ending date. Leaving the ending date blank will include all records on or after the starting date. Leaving both dates blank will include all records. The following reports will be available.

Tool Transfer

This report shows all transfers entered for a specified date range. It is sorted by category and Widgets Etc.#/tool description, and shows the quantity transferred, where the tool was transferred from, where the tool was transferred to, and the date of the transfer. For items tracked individually, the serial number, purchase date and vendor are shown. For items tracked in groups, the quantity transferred is shown. Any notes recorded with the transfer are also shown. In cases where either location has additional info, that info will be shown below the location. If either location is a job, the job name will be shown below the job number. The selected dates will be shown in the report header.

Tool Search

This report can be sorted by category, in which case, it will show all jobs that have tools for each category, or it can be sorted by location, in which case it will show all the categories of tools at each location. With either sorting option, the report will show Widgets Etc. number, serial number, purchase date and vendor for items tracked individually. A quantity subtotal will be shown based on the sort order. This report will have filter options for selecting a single location and selecting a single tool category. These filter criteria will be shown in the report header. In addition, there will be an option to include purchase price on the report. If the price is shown, there will be a subtotal based on the current sort order, and a grand total at the end of the report. For non-serialized tools, price will be based on the average price of the last five purchases made.

Purchase History

This report will have a date range option and an option to show the purchase price.

Screens

The program will start with a login screen, asking for the user name and password. The login will be validated against the existing Widgets Etc. Office System’s user’s table.

The various input screens will be available from the File menu pad. A type of “splash screen” will be displayed in the background at all times, and will be visible when no other screen is displayed.

The splash screen is shown below, with the menu pads.

[image: image1.png]/" Microsoft Visual FoxPro =J=e3

Fie Edt Reporis Utites Hep Concel

Widgets Etc.

Tool Inventory System

(€)2002-2004, Peisch Custom Software, Inc.

The various input screens needed are described below. A picture of a preliminary version of each of these screens is included to help visualize the final product.

All lists will have the ability to be sorted in multiple ways. Clicking on the header of a column will sort by that column, and the header will appear in bold blue.

All screens with lists will have an “incremental search textbox” which allows you to search for an item in the list, based on the current sort order of the list. As you type into the list, the closest match to what you’ve typed is selected in the list.

Some screens have “quick fill” text boxes. These are textboxes that fill in a complete entry that is the closest match to what you’ve typed so far. If what is filled in is what you want to select, press Tab to move to the next field. Otherwise, keep typing to refine the entry.

Tool Master Screen

The Tool Master screen will have a pageframe with two pages. The first one will show a list of tools in the system, the second page will show details for the current tool.

[image: image2.png]List Details

[N Search Adyanced Filter

Show tools in current offce only.

[categories (Highest to Lowest) Categories (Lowestto Highest) Wiaz [~

Double-click on an item or go to Details to edit. Serial #

Tool Search Report

[image: image3.png]T R o =1 |

List H\ Defails]

Category: Enter category in texibox or select from tree.

& wo

Category cannot be changed once recordis saved.

Current Location

Toorssammepat g][swe][comn

The list page will show the tool description and the category. The category will be the description from the three levels, concatenated and separated by hyphens. The list page is only for viewing. No changes can be made. The detail screen is where all changes are made to the tool master record.

The Category textbox is a “quick fill” textbox. Below this is a treeview (like Windows Explorer), showing the possible categories. You may select a category either by using the quick fill textbox or by clicking on it in the treeview.

The inactive checkbox is always disabled. It’s just a designation that shows if the tool is still owned and used by Widgets Etc.

The current location textboxes are always disabled. They show the location where the tool is. If the location is a job, the top textbox will show the number and the bottom will show the job name. If the location is a something that requires additional info, the top textbox will show the location name, and the bottom textbox will show the other info.

A tool master record cannot be deleted if there are any transfers for that tool.

Transfers Screen

[image: image4.png]e tanstors

BE)

=

Widgets # Searen
Tools pate From To ay
From To.
Detals Detals
Job# Job#
Employee. Employee
ofice ofice
Notes o
TarsierRepor

The “From” and “To” columns will reflect wherever a tools was transferred from and to, regardless if that is a job, person, office or service.

When adding a tool, the tool may be selected in one of three ways:

1. Typing the tool in the quick fill textbox in the upper left of the screen

2. Entering the Widgets #

3. Clicking on the tool in the treeview which is shown below the quick fill textbox

Transfers will not be saved without complete information. All transfers must have a tool selected, a date entered (which will be the current date by default), and From and To locations. In addition, if a selected location requires a job number, office or employee, that job number, office or employee must be selected from the corresponding dropdown list. The lists will be disabled if no selection is required. If a selected location requires additional information, you must fill in the Details textbox. The Details textbox will be disabled if no additional information is required. If a selected location requires a service record, you must create the service record. If no service record is required, the Service Record button will be disabled.

Possible Future Enhancements

These items will be designed and estimated if and when the requirement for them arises.

1. The ability to archive old transfer and purchase history, and to purge tools no longer in use.

2. Data repair tools, other than the “Pack and reindex” option that is already to be included with this program. These tools would only be available to a “Master user” as defined in the Widgets Etc. Office system.

Technical Specifications
New tables required that don’t exist in the Widgets Etc. Office System will follow the same data structure rules currently in use by the Widgets Etc. Office System. Specifically, this means each table will have a primary key called “PKField”, defined as an Integer data type. All foreign keys will start with “FK” followed by the name of the table to which they point. Foreign keys will also be defined as Integer.

New tables will not be included in the current data dictionary for the Widgets Etc. Office System, and will therefore, not be affected by changes to the data dictionary. Instead, table and tag definitions for these tables will be stored in a single “meta” table used for updating structures and tags. This system is already in use by Peisch Custom Software for other projects. New tables will not use the file naming convention already in use, namely, starting all product tables with “Wid” because of the possibility of conflicting names in the future.

The existing programming framework for the Widgets Etc. Office System is not available to Peisch Custom Software, and therefore, the Tool Inventory System will be written using the tools that Peisch Custom Software uses for other projects. Exceptions to this are the routine for assigning a primary key to a new record, and the routine for un-encrypting user passwords. For these, Peisch Custom Software will need the code used by ProgrammersRUs.
Configuration

In order for the system to allow tool tracking for multiple offices, data for each office will be stored in a separate subdirectory under the main directory for the program. This subdirectory name will be the same name used in the WidOffi file, but with spaces in the name removed. For example, the subdirectory for Los Angeles will be LosAngeles. The data directory used will be determined by the office of the user logging in. This directory structure allows for multiple offices to use the same machine, but in no way hampers the use of the program if only data for a single office is to be used on the machine.

Tables

WidVendl

We need a logical field in the existing WidVendl table that shows if the vendor is available for tool purchases.

In addition, the following new tables are required. Note that transaction-oriented tables store the key to the employee record for the person who created the record and the employee who last modified the record. We will not store either of these for non-transaction type tables.

ToolMast

This is the Tool Master table. Maintenance of the Tool Master table is allowed by the manager and data entry levels. The Tool Master is the inventory of all tools owned or ever owned by Widgets Etc..

Tools with a Widgets Etc.No are to be tracked individually, whereas tools without a Widgets Etc.No are tracked as a group solely by quantity. Items with a Widgets Etc.No do not need to have the QtyOwned field filled in. Likewise, any item with a QtyOwned greater than 1 will not allow a Widgets Etc.No or SerialNo to be entered.

If an item is lost, stolen or removed from inventory for any reason, the Inactive flag will be set to .T. but the item is kept in inventory. This is necessary in case the item is later recovered, or someone wants to view a transfer history for the item.

The TOOLMAST will have the following structure:

PKField
I
4
Primary key

ToolName
C
50
Name of tool

WidgetsNo
I
4
Optional number assigned by Widgets Etc.

SerialNo
C
20
Tool’s serial number

Mfg

C
50
Manufacturer

Model

C
50
Model

Inactive
L
1
Flag for items “removed” from inventory

Serialized tools only

Notes

M
4
Misc. notes

ToolPHst

This it the Tool Purchase History. It tracks purchase of both serialized and non-serialized tools. There will be a single record for each serialized tool, but can be many records for non-serialized tools.

PKField
I
4
Primary key

FKToolMast
I
4
Pointer to tool master record

FKWidVendl
I
4
Vendor site purchased from

PurchDate
D
8
Date of purchase

PurchQty
N
5,1
Qty purchased (in qty/units defined for the tool)

Example: If cord is purchased in 100 ft sections and this

purchase record is for 300 ft, the PurchQty would be 3.

PurchPrice
N
9,2
Extended purchase price

ToolTran

This is the tool transfers file. It stores a history of all the movements of tools. It will have the following structure:

PKField

I
4
Primary key

FKWidEmpC

I
4
Employee who created the record

FKWidEmpM

I
4
Employee who last modified the record

FKToolMast

I
4
Pointer to master tool record

FKToolLocF

I
4
Transferred From location

FKWidJobFm

I
4
Pointer to job for location from (if applicable)

FKToolSrvFm

I
4
Service record for location from (if applicable)

FKWidOffiFm

I
4
Office tool was transferred from (if applicable)

FKWidEmpFm
I
4
Employee tool was transferred from (if applicable)

FKToolLocT

I
4
Transferred To location

FKWidJobTo

I
4
Pointer to job for location to (if applicable)

FKToolSrvTo

I
4
Service record for location to (if applicable)

FKWidOffiTo

I
4
Office tool was transferred to (if applicable)

FKWidEmpTo

I
4
Employee tool was transferred to (if applicable)

XferDate

D
8
Date of transfer (def. is current day, but may be changed)

Qty

I
4
Qty transferred (for tools that are tracked as a group)

OtherNameF

C
50
Required when ToolLoc1 record has ReqOther = .T.

OtherNameT

C
50
Required when ToolLoc2 record has ReqOther = .T.

Notes

M
4
Misc. notes

The OtherName fields are for holding info about which “Other” location was used. This is a free-form field—no lookup is done. (See description under ToolCat table.) If a tool is transferred from a service location for a service with the Maintenance flag set to .T., the date of the next routine maintenance will be set in the Tool Master. If maintenance is based on “Usage” or “Both”, the system will ask for an estimate of how long it will take for that tool to get that amount of usage. If the maintenance type is “Both”, the system will take the sooner date of time or the entered estimate.

